These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microcystin-LR heterologous genetically engineered antibody recombinant and its binding activity improvement and application in immunoassay. Author: Xu C, He D, Zu Y, Hong S, Hao J, Li J. Journal: J Hazard Mater; 2021 Mar 15; 406():124596. PubMed ID: 33307449. Abstract: Microcystin-LR (MC-LR) is a high-toxic biohazard that pollutes ecological environment and agroproducts. In this study, a newly recombined genetically engineered antibody (AVHH-MVH) with higher thermal stability and binding activity was designed by chain shuffling and based on our previously obtained anti-MC-LR scFv and nanobody. Based on AVHH-MVH template, a capacity of 8.99 × 105 CFU/mL of phage display AVHH-MVH mutagenesis library was constructed by site-directed mutagenesis in MVH-CDR3 region, and then used for ultrasensitive mutants screening. Afterwards, a total of five positive AVHH-MVH mutants were isolated from the mutagenesis library, and their binding activity was higher than AVHH-MVH for MC-LR. The AVHH-MVH mutant 3 was cloned into pET-25b vector for soluble expression, and the concentration of target protein expressed in culture system was 43.5 mg/L. An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was established based on purified AVHH-MVH mutant 3 protein, and it showed ultrasensitive binding activity for MC-LR with the detection limit of 0.0075 μg/L, which was far below the maximum residue limit standard of 1.0 μg/L in drinking water proposed by World Health Organization. The established IC-ELISA shows good accuracy, repeatability, stability and applicability for MC-LR spiked samples, and it is promising for MC-LR ultrasensitive monitoring.[Abstract] [Full Text] [Related] [New Search]