These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antimicrobial evaluation of myricetin derivatives containing benzimidazole skeleton against plant pathogens. Author: Chen M, Tang X, Liu T, Peng F, Zhou Q, Luo H, He M, Xue W. Journal: Fitoterapia; 2021 Mar; 149():104804. PubMed ID: 33309970. Abstract: A series of novel myricetin derivatives containing benzimidazole skeleton were constructed. The structure of compound 4g was further corroborated via X-ray single crystal diffractometer. The antimicrobial bioassays showed that all compounds exhibited potent inhibitory activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs) and Xanthomonas oryzae pv. Oryzae (Xoo) in vitro. Significantly, compound 4q showed the best inhibitory activities against Xoo, with the EC50 value of 8.2 μg/mL, which was better than thiodiazole copper (83.1 μg/mL) and bismerthiazol (60.1 μg/mL). In vivo experimental studies showed that compound 4q can treat rice bacterial leaf blight at 200 μg/mL, and the corresponding curative and protection efficiencies were 45.2 and 48.6%, respectively. Meanwhile, the antimicrobial mechanism of the compounds 4l and 4q were investigated through scanning electron microscopy (SEM). Studies showed that compounds 4l or 4q can cause deformation or rupture of Rs or Xoo cell membrane. These results indicated that novel benzimidazole-containing myricetin derivatives can be used as a potential antibacterial reagent.[Abstract] [Full Text] [Related] [New Search]