These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) followed by anammox process treating municipal wastewater at seasonal temperatures: From summer to winter. Author: Yuan C, Wang B, Peng Y, Li X, Zhang Q. Journal: Sci Total Environ; 2021 Feb 25; 757():144048. PubMed ID: 33316517. Abstract: This work investigated the feasibility of a novel simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) plus anammox process treating real municipal wastewater from summer to winter (28.1- 15.3 °C). Two lab-scale sequential reactors were used in this study, namely EBPR-SN and Anammox sequencing batch reactors (SBRs). Long-term operation suggested that ammonium oxidizing bacteria abundance decreased from 1.67% to 0.89% whereas nitrite oxidizing bacteria decreased to nearly undetected in the EBPR-SN SBR, maintaining the stable nitritation (nitrite accumulation ratio: 98.3 ± 1.0%). Lowering airflow rate was effective to retain nitritation with temperature decrease. Reliable nutrient removal was still maintained in winter (16.4 ± 0.7 °C), i.e. the removal efficiencies for nitrogen and phosphorus were 80.0 ± 3.5% and 95.4 ± 5.2%, respectively, with short aerobic HRT (6.4 h) and low dissolved oxygen (0.2-1.5 mg/L). The percentage of anammox contribution to nitrogen-removal increased with temperature decrease, although Candidatus Brocadia abundance decreased. Additionally, the protection of extracellular polymeric substances was important to the successful performance.[Abstract] [Full Text] [Related] [New Search]