These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and mutagenicity of 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, microsomal metabolites of 1-nitropyrene. Author: Fifer EK, Howard PC, Heflich RH, Beland FA. Journal: Mutagenesis; 1986 Nov; 1(6):433-8. PubMed ID: 3331683. Abstract: [4,5,9,10-(3)H]1-Nitropyrene was incubated with liver microsomes prepared from guinea pigs treated with Aroclor 1254 and the products were examined by h.p.l.c. The previously reported metabolites, 1-nitropyrene trans-4,5-dihydrodiol, 1-nitropyrene trans-9,10-dihydrodiol, and 3-, 6-, and 8-hydroxy-1-nitropyrene were detected. In addition, h.p.l.c., nuclear magnetic resonance and mass spectral analyses indicated the presence of 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide. The epoxide hydrase inhibitor, 1,2-epoxy-3,3,3-trichloropropane, decreased the concentration of the 4,5- and 9,10-dihydrodiols in the microsomal incubations and increased the concentration of their corresponding oxides. Reaction of 1-nitropyrene with m-chloroperoxybenzoic acid gave a mixture of 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, which was separated by chromatography. The mutagenicity of the oxides was determined in Salmonella typhimurium strains TA98, TA98NR, and TA98/1,8-DNP6, both with and without exogenous activation by a rat liver homogenate fraction (S9). In the absence of S9, both oxides showed maximum activity in TA98, slightly decreased mutagenicity in the acetylase-deficient strain TA98/1,8-DNP6, and much reduced activity in the nitroreductase-deficient strain, TA98NR. When assayed in the presence of S9, 1-nitropyrene 4,5-oxide had maximum mutagenicity in TA98, and was 50 and 95% less mutagenic in TA98NR and TA98/1,8-DNP6, respectively. 1-Nitropyrene 9,10-oxide had a similar strain sensitivity, except that its total mutagenicity was lower. Since 1-nitropyrene is metabolized by oxidative pathways in vivo, these K-region oxides may contribute to the toxicities elicited by this compound.[Abstract] [Full Text] [Related] [New Search]