These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stable Forward Osmosis Nanocomposite Membrane Doped with Sulfonated Graphene Oxide@Metal-Organic Frameworks for Heavy Metal Removal.
    Author: He M, Wang L, Zhang Z, Zhang Y, Zhu J, Wang X, Lv Y, Miao R.
    Journal: ACS Appl Mater Interfaces; 2020 Dec 23; 12(51):57102-57116. PubMed ID: 33317267.
    Abstract:
    A sulfonated graphene oxide@metal-organic framework-modified forward osmosis nanocomposite (SGO@UiO-66-TFN) membrane was developed to improve stability and heavy metal removal performance. An in situ growth method was applied to uniformly distribute UiO-66 nanomaterial with a frame structure on SGO nanosheets to form SGO@UiO-66 composite nanomaterial. This nanomaterial was then added to a polyamide layer using interfacial polymerization. The cross-linking between SGO@UiO-66 and m-phenylenediamine improved the stability of the nanomaterial in the membrane. Additionally, the water permeability was improved because of additional water channels introduced by SGO@UiO-66. SGO, with its lamellar structure, and UiO-66, with its frame structure, made the diffusion path of the solute more circuitous, which improved the heavy metal removal and salt rejection performances. Moreover, the hydrophilic layer of the SGO@UiO-66-TFN membrane could block contaminants and loosen the structure of the pollution layer, ensuring that the membrane maintained a high removal rate. The water flux and reverse solute flux of the SGO@UiO-66-TFN membrane reached 14.77 LMH and 2.95 gMH, and compared with the thin-film composite membrane, these values were increased by 41 and 64%, respectively. The membrane also demonstrated a good heavy metal ion removal performance. In 2 h, the heavy metal ion removal rate (2000 ppm Cu2+ and Pb2+) was greater than 99.4%, and in 10 h the removal rate was greater than 97.5%.
    [Abstract] [Full Text] [Related] [New Search]