These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering.
    Author: Gautam S, Sharma C, Purohit SD, Singh H, Dinda AK, Potdar PD, Chou CF, Mishra NC.
    Journal: Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111588. PubMed ID: 33321633.
    Abstract:
    Bone injuries and fractures generally take a long period to heal itself. To address this problem, bone tissue engineering (BTE) has gained significant research impetus. Among the several techniques used for scaffold fabrication, electrospinning ought to be the most promising technique for the development of the nanostructured scaffolds. The present study was carried out to fabricate an electrospun nanocomposite scaffold for BTE by using gelatin, polycaprolactone (PCL), and nanohydroxyapatite (nHAp). To prepare Gelatin-PCL-nHAp nanocomposite scaffold: Gelatin-PCL blend was electrospun and then treated with nHAp (1 wt%) for different time periods. The fabricated nanocomposite scaffold was analysed by field emission scanning electron microscopy (FESEM) to determine the fiber diameter and evaluate the fiber morphology. The Gelatin-PCL-nHAp nanocomposite scaffold-20 min exhibited the average fiber diameter of 615±269 nm and average pore size 4.7±1.04 μm, and also revealed the presence of nHAp particles over the Gelatin-PCL scaffold surface. Further, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis also indicated the deposition of nHAp over the Gelatin-PCL scaffold surface. MTT assay and DNA quantification showed good viability and significant proliferation of human osteoblasts on Gelatin-PCL-nHAp nanocomposite scaffold. Moreover, cell-scaffold constructs illustrated efficient cellular attachment and adequately spread cells, and it also depicts characteristic polygonal morphology of osteoblasts over the Gelatin-PCL-nHAp nanocomposite scaffold. Thus, the results of in-vitro analysis of electrospun nanocomposite scaffold suggest that the Gelatin-PCL-nHAp scaffold can be a potential candidate for BTE applications.
    [Abstract] [Full Text] [Related] [New Search]