These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glial repair in an insect.
    Author: Treherne JE, Howes EA, Smith PJ.
    Journal: J Physiol (Paris); 1987; 82(4):239-47. PubMed ID: 3332688.
    Abstract:
    The repair of cockroach central nervous connectives, following selective glial disruption, involves an initial invasion of the lesion by a novel cell class. The available evidence, including that obtained using monoclonal antibodies, shows that these cells arise from circulating haemocytes. These invasive exogenous cells are restricted to the lesion zone. They are not only involved in initial repair of the peripheral glial elements, but may also be responsible for initiating recruitment and division of endogenous reactive cells. There is a clear anterior polarity in this recruitment, with significantly higher numbers of cells appearing anterior to, and then within, the lesion area. Characteristically, recognizable exogenous cells decline in number after 3 days, although there is no overall reduction in cell numbers within the lesion at this stage, nor has significant cell division begun. This suggests that the haemocyte-derived cells transform into, or are replaced by, functional perineurial glia, between 3 and 5 days, coincident with the restoration of the blood-brain barrier and the onset of endogenous cell division. Glial repair in the insect CNS can thus be divided into three phases which show striking similarities to the repair sequence in vertebrate brain. These include: an initial invasion of the lesion by exogenous cells, subsequent glial proliferation and then longer term fluxes in cell numbers and distribution.
    [Abstract] [Full Text] [Related] [New Search]