These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of pH-sensitive vaginal films based on methacrylate copolymers for topical HIV-1 pre-exposure prophylaxis.
    Author: Notario-Pérez F, Galante J, Martín-Illana A, Cazorla-Luna R, Sarmento B, Ruiz-Caro R, das Neves J, Veiga MD.
    Journal: Acta Biomater; 2021 Feb; 121():316-327. PubMed ID: 33333257.
    Abstract:
    Interest is growing in "smart" vaginal microbicides as a strategy to protect women from sexual transmission of human immunodeficiency virus (HIV). The concept is based on the development of products featuring low drug release in acidic media such as vaginal fluid but switch to a fast release profile when the medium becomes neutral or slightly alkaline. This mimics the surge in pH occurring in the vagina after sexual intercourse due to the seminal fluid. Semen is the main vehicle for HIV-1, and increasing antiretroviral drug levels in the vagina upon ejaculation may contribute to enhanced protection against viral sexual transmission. This work explores the use of different pharmaceutical-grade methacrylic acid-based polymers (Eudragit RL, RS, L and S) for developing vaginal films allowing the pH-dependant release of the antiretroviral drug tenofovir (TFV). Eudragit L 100 and Eudragit S 100, containing triethyl citrate as plasticiser, proved to be suitable for manufacturing films with optimal dual in vitro drug-release behaviour. TFV-release can be sustained for several days after film administration and all the drug is released in a few hours in conditions simulating ejaculation. The films' mechanical properties were also deemed suitable for comfortable vaginal administration. Two optimized films were further assessed using HEC-1-A and Ca Ski cell monolayer models and were found to possess favourable drug permeability profiles and drug levels associated to cell monolayer as compared to free TFV. Overall, pH-dependant films containing tenofovir may constitute promising candidates for "smart" vaginal microbicides to protect women from sexual HIV transmission.
    [Abstract] [Full Text] [Related] [New Search]