These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin-Orbit Torque. Author: Wu H, Nance J, Razavi SA, Lujan D, Dai B, Liu Y, He H, Cui B, Wu D, Wong K, Sobotkiewich K, Li X, Carman GP, Wang KL. Journal: Nano Lett; 2021 Jan 13; 21(1):515-521. PubMed ID: 33338380. Abstract: Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how can the symmetry of the perpendicular magnetic moment be broken by the in-plane spin polarization? Here, we show that the chiral symmetry breaking by the antisymmetric Dzyaloshinskii-Moriya interaction (DMI) can induce the deterministic SOT switching of the perpendicular magnetization. By introducing a gradient of saturation magnetization or magnetic anisotropy, the dynamic noncollinear spin textures are formed under the current-driven SOT, and thus, the chiral symmetry of these dynamic spin textures is broken by the DMI, resulting in the deterministic magnetization switching. We introduce a strategy to induce an out-of-plane (z) gradient of magnetic properties as a practical solution for the wafer-scale manufacture of SOT devices.[Abstract] [Full Text] [Related] [New Search]