These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual response to pH and chiral microenvironments for the release of a flurbiprofen-loaded chiral self-assembled mesoporous silica drug delivery system.
    Author: Wu L, Gou K, Guo X, Guo Y, Chen M, Hou J, Li S, Li H.
    Journal: Colloids Surf B Biointerfaces; 2021 Mar; 199():111501. PubMed ID: 33338882.
    Abstract:
    This study examined the effects of pH and chirality on the release of flurbiprofen (FP)-loaded chiral (L/D) self-assembled mesoporous silica nanoparticles (CSA-L/D-MSNs), which were synthesized using cationic cetyltrimethyl ammonium bromide (CTAB) as a template and chiral modified using L/D-tartaric acids. The morphology and physicochemical properties of the CSA-L/D-MSNs were systemically determined and compared with those of non-functionalized mesoporous silica nanoparticles (MSN). The results showed that the CSA-L/D-MSNs were spherical nanoparticles, and the chirality in the L/D-tartaric acids was successfully imparted to the CSA-L/D-MSNs. FP could be loaded into the CSA-L/D-MSNs and was effectively transformed from the crystalline state to an amorphous state after drug loading due to the finite size effect. The release of FP@CSA-L/D-MSNs was faster than that of FP in a pH 1.2 medium and slower in a pH 6.8 medium, and it was better than that of FP@MSNs in both release mediums. Meanwhile, the FP@CSA-L/D-MSNs exhibited a clearly enhanced pH response because the negatively charged carboxyl groups on their surface induced stronger electrostatic repulsion between FP and CSA-L/D-MSNs. Moreover, the effect of the chiral environment on the release of FP@CSA-L/D-MSNs was further studied by introducing small-molecule chiral additives (L/D-alanine). It was found that the release of FP was inhibited in a chiral environment. Particularly, the CSA-L/D-MSNs began to exert the chiral recognition function, in which the CSA-L-MSN responded to chiral stimuli and enhanced the cumulative release amount from 84.25 %-89.11 % in a pH 6.8-L medium, while the CSA-D-MSN showed a suppressed release in the pH 6.8-L medium. Notably, the CSA-L/D-MSNs exhibited intelligent drug release by both chirality response and pH response, and will provide valuable guidance for the design of drug delivery systems.
    [Abstract] [Full Text] [Related] [New Search]