These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Association of the Sp1 binding site and -1997 promoter variations in COL1A1 with osteoporosis risk: The application of meta-analysis and bioinformatics approaches offers a new perspective for future research. Author: Moradifard S, Hoseinbeyki M, Emam MM, Parchiniparchin F, Ebrahimi-Rad M. Journal: Mutat Res Rev Mutat Res; 2020; 786():108339. PubMed ID: 33339581. Abstract: As a complex disease, osteoporosis is influenced by several genetic markers. Many studies have examined the link between the Sp1 binding site +1245 G > T (rs1800012) and -1997 G > T (rs1107946) variations in the COL1A1 gene with osteoporosis risk. However, the findings of these studies have been contradictory; therefore, we performed a meta-analysis to aggregate additional information and obtain increased statistical power to more efficiently estimate this correlation. A meta-analysis was conducted with studies published between 1991-2020 that were identified by a systematic electronic search of the Scopus and Clarivate Analytics databases. Studies with bone mineral density (BMD) data and complete genotypes of the single-nucleotide variations (SNVs) for the overall and postmenopausal female population were included in this meta-analysis and analyzed using the R metaphor package. A relationship between rs1800012 and significantly decreased BMD values at the lumbar spine and femoral neck was found in individuals carrying the "ss" versus the "SS" genotype in the overall population according to a random effects model (p < 0.0001). Similar results were also found in the postmenopausal female population (p = 0.003 and 0.0002, respectively). Such findings might be an indication of increased osteoporosis risk in both studied groups in individuals with the "ss" genotype. Although no association was identified between the -1997 G > T and low BMD in the overall population, those individuals with the "GT" genotype showed a higher level of BMD than those with "GG" in the subgroup analysis (p = 0.007). To determine which transcription factor (TF) might bind to the -1997 G > T in COL1A1, 45 TFs were identified based on bioinformatics predictions. According to the GSE35958 microarray dataset, 16 of 45 TFs showed differential expression profiles in osteoporotic human mesenchymal stem cells relative to normal samples from elderly donors. By identifying candidate TFs for the -1997 G > T site, our study offers a new perspective for future research.[Abstract] [Full Text] [Related] [New Search]