These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hg2+ Significantly Enhancing the Peroxidase-Like Activity of H2TCPP/ZnS/CoS Nanoperoxidases by Inducing the Formation of Surface-Cation Defects and Application for the Sensitive and Selective Detection of Hg2+ in the Environment. Author: Li N, He Y, Lian J, Liu QY, Zhang YX, Zhang X. Journal: Inorg Chem; 2020 Dec 21; 59(24):18384-18395. PubMed ID: 33342214. Abstract: Exploring excellent peroxidase mimics with enhanced peroxidase-like activity is important to the construction of a fast, low-cost, and convenient colorimetric sensing platform for heavy ions. In this work, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (H2TCPP) was first used to modify ZnS/CoS and make it show better peroxidase-like activity. The metal-cation vacancies generated by Hg2+ contacting H2TCPP/ZnS/CoS further stimulate the catalytic activity. It is reported that the addition of Hg2+ usually causes a decrease of the peroxidase-like activity of metal sulfides. Oppositely, in our work, Hg2+ can trigger the colorimetric signal amplification because of lots of metal-cation vacancies generated on the surface of the nanocomposites (bimetallic sulfides). The peroxidase-like activity of ZnS/CoS was evaluated by virtue of the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) from colorless to blue in 3 min. The enhanced catalytic activity of H2TCPP/ZnS/CoS was attributed to lots of active sites from the metal-cation defects on the surface of H2TCPP/ZnS/CoS as well as the synergistic effect of porphyrin molecules and ZnS/CoS. The adsorption behavior of H2O2 on the H2TCPP/ZnS/CoS surface with defects was studied by density functional theory calculation. Thus, a colorimetric sensing platform based on Hg2+ trigger signal amplification has been successfully constructed, which can be used to sensitively and selectively determine Hg2+ in environmental samples.[Abstract] [Full Text] [Related] [New Search]