These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dimethyl fumarate protects against intestinal ischemia/reperfusion lesion: Participation of Nrf2/HO-1, GSK-3β and Wnt/β-catenin pathway.
    Author: Gendy A, Soubh A, Al-Mokaddem A, Kotb El-Sayed M.
    Journal: Biomed Pharmacother; 2021 Feb; 134():111130. PubMed ID: 33348309.
    Abstract:
    OBJECTIVE: Dimethyl fumarate (DMFU), a known Nrf2 activator, has proven its positive effect in different organs against ischemia/reperfusion (Is/Re) injury. Nevertheless, its possible impact to modulate intestinal Is/Re-induced injury has not been previously demonstrated before. Hence, this study aimed to investigate DMFU mechanistic maneuver against intestinal Is/Re. METHODS: To accomplish this goal, Wistar rats were allocated into four groups; Sham-operated (SOP), intestinal Is/Re (1 h/6 h), and 14 days pre-treated DMFU (15 and 25 mg/kg/day, p.o). RESULTS: The mechanistic maneuver divulged that DMFU safeguarded the intestine partly via amplifying the expression/content of Nrf2 along with enhancing its downstream, HO-1 expression/content. In addition, DMFU lessened GSK-3β expression/content accompanied by enriching β-catenin expression/content. The antioxidant action was affirmed by enhancing total antioxidant capacity, besides reducing MDA, iNOS, and its by-product, NOx. The DMFU action entailed anti-inflammatory character manifested by down-regulation of expression/content NF-κB with subsequent rebating the contents of TNF-α, IL-1β, and P-selectin, as well as MPO activity. Moreover, DMFU had anti-apoptotic nature demonstrated through enriching Bcl-2 level and diminishing that of caspase-3. CONCLUSION: DMFU purveyed tenable novel protective mechanisms and mitigated events associated with intestinal Is/Re mischief either in the lower or the high dose partly by amending of oxidative stress and inflammation through the modulation of Nrf2/HO-1, GSK-3β, and Wnt/β-catenin pathways.
    [Abstract] [Full Text] [Related] [New Search]