These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification. Author: Bús C, Kúsz N, Kincses A, Szemerédi N, Spengler G, Bakacsy L, Purger D, Berkecz R, Hohmann J, Hunyadi A, Vasas A. Journal: Molecules; 2020 Dec 17; 25(24):. PubMed ID: 33348712. Abstract: The occurrence of phenanthrenes is limited in nature, with such compounds identified only in some plant families. Phenanthrenes were described to have a wide range of pharmacological activities, and numerous research programs have targeted semisynthetic derivatives of the phenanthrene skeleton. The aims of this study were the phytochemical investigation of Juncus tenuis, focusing on the isolation of phenanthrenes, and the preparation of semisynthetic derivatives of the isolated compounds. From the methanolic extract of J. tenuis, three phenanthrenes (juncusol, effusol, and 2,7-dihydroxy-1,8-dimethyl-5-vinyl-9,10-dihydrophenanthrene) were isolated. Juncusol and effusol were transformed by hypervalent iodine(III) reagent, using a diversity-oriented approach. Four racemic semisynthetic compounds possessing an alkyl-substituted p-quinol ring (1-4) were produced. Isolation and purification of the compounds were carried out by different chromatographic techniques, and their structures were elucidated by means of 1D and 2D NMR, and HRMS spectroscopic methods. The isolated secondary metabolites and their semisynthetic analogues were tested on seven human tumor cell lines (A2780, A2780cis, KCR, MCF-7, HeLa, HTB-26, and T47D) and on one normal cell line (MRC-5), using the MTT assay. The effusol derivative 3, substituted with two methoxy groups, showed promising antiproliferative activity on MCF-7, T47D, and A2780 cell lines with IC50 values of 5.8, 7.0, and 8.6 µM, respectively.[Abstract] [Full Text] [Related] [New Search]