These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS2. Author: Schröter NBM, Robredo I, Klemenz S, Kirby RJ, Krieger JA, Pei D, Yu T, Stolz S, Schmitt T, Dudin P, Kim TK, Cacho C, Schnyder A, Bergara A, Strocov VN, de Juan F, Vergniory MG, Schoop LM. Journal: Sci Adv; 2020 Dec; 6(51):. PubMed ID: 33355138. Abstract: Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS2, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS2 as a spin injector by modifying its spin polarization at interfaces. In addition, we directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS2 cannot be a true half-metal.[Abstract] [Full Text] [Related] [New Search]