These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-9-5p inhibits proliferation and induces apoptosis of human hypertrophic scar fibroblasts through targeting peroxisome proliferator-activated receptor β. Author: Chai CY, Tai IC, Zhou R, Song J, Zhang C, Sun S. Journal: Biol Open; 2020 Dec 21; 9(12):. PubMed ID: 33355167. Abstract: Hypertrophic scar (HS) is a dermal fibro-proliferative disorder result from abnormal wound healing after skin injury. MicroRNA-9-5p (miR-9-5p) has been reported to be upregulated and closely related to collagen proteins in human dermal fibroblasts. However, the correlation and possible mechanism between miR-9-5p and HS require further investigation. The expressions of miR-9-5p in HS tissues and HS fibroblasts were detected by quantitative real-time PCR (RT-qPCR). The expression level of peroxisome proliferator-activated receptor β (PPARβ) was measured by RT-qPCR assay. The protein levels of PPARβ, α-SMA, Vimentin, COL1A, cyclin D1, bcl-2, and bax were detected by western blot assay. The effect of miR-9-5p and PPARβ on HS fibroblasts proliferation and apoptosis were detected by cell counting kit-8 (CCK-8) and flow cytometry assays. The interaction between miR-9-5p and PPARβ was predicted by TargetScan, and then confirmed by dual-luciferase reporter assay. MiR-9-5p expression was downregulated in HS tissues and HS fibroblasts. MiR-9-5p inhibited the levels of extracellular matrix-associated genes (α-SMA, Vimentin, COL1A) in HS fibroblasts. MiR-9-5p repressed proliferation and induced apoptosis of HS fibroblasts. PPARβ is a target gene of miR-9-5p. The silencing of PPARβ expression hindered proliferation and expedited apoptosis of HS fibroblasts. MiR-9-5p suppressed proliferation and promoted apoptosis of HS fibroblasts by targeting PPARβ. In this paper, we firstly disclosed that miR-9-5p hampered extracellular matrix deposition and proliferation, and induced apoptosis by targeting PPARβ in HS fibroblasts. Our findings provided a new role of miR-9-5p/PPARβ in the occurrence and development of HS fibroblasts, promising a new target for HS.[Abstract] [Full Text] [Related] [New Search]