These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Author: Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W. Journal: Nanoscale; 2021 Jan 14; 13(2):862-868. PubMed ID: 33355579. Abstract: Two-dimensional (2D) van der Waals (vdW) heterostructures, known as layer-by-layer stacked 2D materials in a precisely chosen sequence, have received more and more attention in spintronics for their ultra-clean interface, unique electronic properties and 2D ferromagnetism. Motivated by the recent synthesis of monolayer 1T-VSe2 with ferromagnetic ordering and a high Curie temperature above room temperature, we investigate the bias-voltage driven spin transport properties of 2D magnetic tunnel junctions (MTJs) based on VSe2 utilizing density functional theory combined with the nonequilibrium Green's function method. In the device 1T-MoSe2/1T-VSe2/2H-WSe2/1T-VSe2/1T-MoSe2, the tunneling magneto-resistance (TMR) is incredibly satisfactory up to 5600%. Based on the analysis of evanescent states, this large TMR is attributed to the spin filter effect at the interface between 1T-VSe2 and 2H-WSe2, which overcomes the low spin polarization of 1T-VSe2. Furthermore, by inserting 2H-MoSe2, the spin filter effect is enhanced with decreasing current and the TMR is drastically improved to 1.7 × 105%. This work highlights the feasibility of 2D vdW heterostructures for ultra-low power spintronic applications by electronic structural engineering.[Abstract] [Full Text] [Related] [New Search]