These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of a High-Efficiency and -Gain Antenna Using Novel Low-Loss, Temperature-Stable Li2Ti1-x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics.
    Author: Guo HH, Fu MS, Zhou D, Du C, Wang PJ, Pang LX, Liu WF, Sombra ASB, Su JZ.
    Journal: ACS Appl Mater Interfaces; 2021 Jan 13; 13(1):912-923. PubMed ID: 33356114.
    Abstract:
    Microwave dielectric ceramics are vital for filters, dielectric resonators, and dielectric antennas in the 5G era. It was found that the (Cu1/3Nb2/3)4+ substitution can effectively adjust the TCF (temperature coefficient of resonant frequency) of Li2TiO3 and simultaneously increase its Q × f (Q and f denote the quality factor and the resonant frequency, respectively) value. Notably, excellent microwave dielectric properties (εr (permittivity) ≈ 18.3, Q × f ≈ 77,840 GHz, and TCF ≈ +9.8 ppm/°C) were achieved in the Li2Ti0.8(Cu1/3Nb2/3)0.2O3 (LTCN0.2) ceramic sintered at 1140 °C. Additionally, the sintering temperature of LTCN0.2 was reduced to 860 °C by the addition of 3 wt % H3BO3, exhibiting superior microwave dielectric properties (εr ≈ 21.0, Q × f ≈ 51,940 GHz, and TCF ≈ 1.4 ppm/°C) and being chemically compatible with silver. Moreover, LTCN0.2 + 3 wt % H3BO3 ceramics were designed as a patch antenna and a dielectric resonator antenna, both of which showed high simulated radiation efficiencies (88.4 and 93%) and gains (4.1 and 4.03 dBi) at the center frequencies (2.49 and 10.19 GHz). The LTCN0.2 + 3 wt % H3BO3 materials have promising future application for either 5G mobile communication devices and/or in low-temperature co-fired ceramic technology owing to their high Q, low sintering temperature, small density, and good temperature stability.
    [Abstract] [Full Text] [Related] [New Search]