These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Motility of murine lymphocytes during transit through cell cycle. Analysis by a new in vitro assay.
    Author: Ratner S, Jasti RK, Heppner GH.
    Journal: J Immunol; 1988 Jan 15; 140(2):583-8. PubMed ID: 3335783.
    Abstract:
    The relationship between the basal (spontaneous) motility of murine lymphocytes and their position in the cell cycle was examined in a new collagen gel motility assay system. Concanavalin A-stimulated or control lymphocytes were allowed to locomote into slabs of type I collagen gel. The assay configuration permitted extraction of both total populations and locomotory subpopulations as viable, single-cell suspensions suitable for phenotypic and cell analysis. Concanavalin A stimulation resulted in a significant increase in the mean distance traveled by the leading cell front in 4 hr, from 23 microns (controls) to 67 microns. The estimated percentage of motile cells increased from 0.9 to 2.8%. Similar increases were observed after 18 hr of locomotion. The SIg+, Thy-1+, L3T4+, and Ly-2+ subsets exhibited equivalent increases in motility. Total populations and locomotory subpopulations were allowed to incorporate 5-bromo-2'-deoxyuridine, and their cell cycle profiles were compared by dual parameter anti-5-bromo-2'-deoxyuridine, propidium iodide fluorescence analysis. Total population and locomotory subpopulations did not differ significantly with respect to the ratio G0/G1:S, indicating that lymphocytes in these two phases exhibited approximately equal motility. Cells in late S and G2 + M were significantly less motile; locomotory subpopulations contained 60 to 75% fewer G2 + M cells than the total populations from which they were derived. Taken together, the results indicate that the concanavalin A-induced increase in motility commences before S phase and that motility diminishes shortly before or during G2 + M.
    [Abstract] [Full Text] [Related] [New Search]