These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Author: Chen J, Rong N, Liu M, Xu C, Xiong Q, Lei Y. Journal: Toxicol Appl Pharmacol; 2021 Jan 15; 411():115384. PubMed ID: 33359661. Abstract: Benign prostatic hyperplasia (BPH) is an age-related disease in men. Mesenchymal /stromal and epithelial cells interactions are essential to prostate functions. In this study, human nonmalignant prostate epithelial RWPE-1 cells were cocultured with testosterone (TE) -exposed prostate stromal fibroblasts WPMY-1 cells (TE-WPMY-1). The survival rate, epithelial-mesenchymal transition (EMT) and collagen deposition of RWPE-1 were observed. The expression profiles of circRNAs, lncRNAs and mRNAs in WPMY-1-derived exosome-like vesicles (WPMY-1-exo) were explored by high-throughput RNA sequencing. Firstly, both TE-WPMY-1 and TE-WPMY-1-exo significantly promoted RWPE-1 cells proliferation. Secondly, 41 circRNAs, 132 lncRNAs and 1057 mRNAs were differentially expressed (DE) between TE-WPMY-1-exo and the control. Functional enrichment analyses, co-expression analyses and quantitative real-time PCR verification showed that the DE RNAs played important roles in cell proliferation, structure, phenotype and fibrosis. Lastly, blocking WPMY-1-exo biogenesis/release by GW4869 can attenuate TE-WPMY-1-stimulated RWPE-1 cells EMT and collagen deposition. Taken together, our results indicated that WPMY-1-exo modulated the phenotypes changes and collagen deposition of prostate epithelial cells. It provided a novel basis for understanding the underlying mechanisms of RWPE-1 cells EMT and fibrosis induced by WPMY-1 in BPH.[Abstract] [Full Text] [Related] [New Search]