These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Base-line O2 extraction influences cerebral blood flow response to hematocrit. Author: Hudak ML, Tang YL, Massik J, Koehler RC, Traystman RJ, Jones MD. Journal: Am J Physiol; 1988 Jan; 254(1 Pt 2):H156-62. PubMed ID: 3337252. Abstract: We have shown that the fall in cerebral blood flow (CBF) as hematocrit (Hct) rises is due to the independent effects of increasing red blood cell (RBC) concentration and arterial O2 content (CaO2). In the present study, we tested the hypothesis that the magnitude of the effect of RBC concentration depends on the base-line cerebral fractional oxygen extraction (E). E is the ratio of O2 demand (cerebral O2 consumption, CMRO2) to supply (cerebral O2 transport: OT = CBF x CaO2) and is assumed to be inversely related to tissue O2 availability. Pentobarbital-anesthetized 1- to 7-day-old sheep were first exchange transfused with plasma to lower Hct to 20%. Base-line E was set to either high or low levels by induction of hypocarbia [arterial CO2 partial pressure (PaCO2) = 15.3 +/- 0.7 mmHg, means +/- SE; n = 7] or hypercarbia (PaCO2 = 62.7 +/- 1.1 mmHg; n = 5), respectively. A second isovolemic exchange transfusion with pure methemoglobin-containing adult sheep red cells then raised Hct (to 38.5 +/- 0.5%) with no significant increase in CaO2. PaCO2 was maintained and other variables (oxyhemoglobin affinity, pH, mean arterial blood pressure) with potential effect on CBF did not change.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]