These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Sources and Health Risks of Atmospheric Polychlorinated Biphenyls in an Urban/Industrial Areas, Northwest China].
    Author: Mao XX, Li ZX, Song SJ, Zhang XD, Gao H, Li CX, Huang T, Ma JM.
    Journal: Huan Jing Ke Xue; 2020 Dec 08; 41(12):5352-5361. PubMed ID: 33374051.
    Abstract:
    A passive air sampler was used to monitor the concentration and contamination profile of 18 polychlorinated biphenyls (PCBs) in the atmosphere over the urban and industrial area of Gaolan, a city in northwest China, during the non-heating and heating seasons of 2018, and the sources, pollutant transport, and the health risks of PCB exposure were analyzed and assessed using principle component analysis, trajectory modeling, and inhalation exposure modeling. The atmospheric concentration in the study area ranged from 110.2 to 429.9 pg·m-3, and the highest average concentration was found at the industrial estate. Tetra-PCBs and penta-PCBs were the dominant homologue groups, and the percentage of tetra-PCBs increased in the heating season. Combustion and industrial thermal processes, PCB-containing electrical equipment, and the combined source of volatilization from paint, combustion, and industrial thermal processes were considered to be the main sources, and the source of combustion and industrial thermal processes contributed the largest proportion of PCBs at 40.8%. Largely, the emission of UP-PCBs would significantly influence PCB pollution in the study area. Trajectory analysis results illustrated that PCBs emitted from sources in the study area would be transmitted to Lanzhou City atmospherically; local pollution would be the main source of PCBs contamination in the study area during the non-heating season, while the atmospheric input of PCBs transmitted from the northwest region would be another source during the heating season. Health risk analysis showed that the non-cancer risk of PCBs exposure was low in all age groups; however, lifetime cancer risks exceeded 10-6. PCBs emitted from combustion and industrial thermal processes sources would have a strong impact on resident exposure to PCBs, and adverse health effects would be caused due to long-term inhalation exposure of the inhabitants to PCBs contamination in the study area.
    [Abstract] [Full Text] [Related] [New Search]