These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rat proximal small intestinal Golgi membranes: lipid composition and fluidity.
    Author: Brasitus TA, Dahiya R, Dudeja PK.
    Journal: Biochim Biophys Acta; 1988 Feb 04; 958(2):218-26. PubMed ID: 3337837.
    Abstract:
    The present studies were conducted to examine and characterize the lipid composition and physical state of the membrane lipids of rat proximal small intestinal Golgi membranes. Golgi membranes were purified from isolated enterocytes; lipids were extracted from these membranes and analyzed by thin-layer and gas-liquid chromatography. The 'static' and 'dynamic' components of fluidity of Golgi membranes and their liposomes were assessed by steady-state fluorescence polarization techniques utilizing r infinity and S values of 1,6-diphenyl-1,3,5-hexatriene and r values of DL-2-(9-anthroyl)- and DL-12-(9-anthroyl)stearic acid, respectively. Additional studies were also performed on these membranes, using benzyl and methyl alcohol, to examine the relationship between alterations in lipid fluidity and glycosphingolipid glycosyltransferase activities. The results of these studies demonstrated that: (1) the principal phospholipids and neutral lipids of intestinal Golgi membranes, respectively, were phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, and unesterified cholesterol and fatty acids; (2) the major fatty acids of Golgi membranes were palmitic (16:0), stearic (18:0), linoleic (18:2), arachidonic (20:4) and oleic (18:1) acids; (3) fluorescence polarization studies using diphenylhexatriene detected a thermotropic transition at 24-26 degrees C in Golgi membranes and liposomes prepared from lipid extracts of these membranes; (4) benzyl alcohol (25 and 50 mM) but not methyl alcohol (50 mM) significantly increased the fluidity of these membranes; and (5) at these same concentrations, benzyl alcohol was also found to increase significantly the specific activity of UDP-galactosyllactosylceramide galactosyltransferase but not CMP-acetylneuraminic acid: lactosylceramide sialyltransferase. Methyl alcohol was not found to influence either enzyme's activity in these membranes.
    [Abstract] [Full Text] [Related] [New Search]