These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental origin of segmental differences in the leech ectoderm: survival and differentiation of the distal tubule cell is determined by the host segment. Author: Martindale MQ, Shankland M. Journal: Dev Biol; 1988 Feb; 125(2):290-300. PubMed ID: 3338616. Abstract: The body plan of the adult leech is metameric, with each hemisegmental complement of ectodermal and mesodermal tissues being produced from a set of seven serially repeated embryonic blast cells. Previous studies have shown that homologous o blast cells give rise to an almost identical complement of descendant cells in each of the 21 abdominal segments, but that one o blast cell derivative--the distalmost cell of the nephridial tubule--is only present in 15 abdominal segments in the mature leech. Here we show that all o blast cells generate a presumptive distal tubule cell and that this cell migrates to its normal position in all abdominal segments. However, in segments which normally do not contain the mesodermal portion of the nephridium, the distal tubule cell dies before undergoing its terminal morphological differentiation. To ascertain whether the fate of the distal tubule cell is determined by its lineage history or by the segmental environment into which it is born, we utilized a previously described procedure for altering the segmental register between different embryonic cell lines. This procedure allowed us to effectively transplant o blast cells into more posterior segments prior to the cell divisions which generate their descendant clones. The results indicate that the survival or death of the distal tubule cell is determined by the identity of the host segment and that a given distal tubule cell could be effectively murdered or rescued by slipping its blast cell precursor into an appropriate segment. These findings suggest that the segment-specific pattern of distal tubule cell survival is not inherent to the O cell line, but arises from interactions with surrounding tissues.[Abstract] [Full Text] [Related] [New Search]