These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid detection and quantification of adulteration in Chinese hawthorn fruits powder by near-infrared spectroscopy combined with chemometrics.
    Author: Sun X, Li H, Yi Y, Hua H, Guan Y, Chen C.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr 05; 250():119346. PubMed ID: 33387806.
    Abstract:
    The aim of this study is to explore the feasibility of detection and quantification of two cheap adulterants (maltodextrin and starch) in Chinese functional food, hawthorn fruits powder (HFP), by using near infrared (NIR) spectroscopy coupled with chemometrics methods. The partial least squares discriminant analysis (PLS-DA) models were developed to discriminate the adulterated HFP from the authentic HFP, while the partial least squares regression (PLSR) models were employed to determine the contents of adulterants. In order to yield the best results, various spectra pretreatment methods and wavelength selection methods were carefully investigated. The models' qualities were assessed by the self-consistency test, the independent test and the rigorous leave-one-out cross-validation test. The metrics for the PLS-DA discriminative model included error rate, true positive rate, true negative rate and F1 score, while the metrics for the PLSR quantitative model were determination coefficient, root mean square error and residual prediction deviation. Finally, very satisfying results were obtained, which indicate that our method is quite robust and applicable, and thus has great potential for rapid detection of adulteration in powder of many other herbal plants or functional foods.
    [Abstract] [Full Text] [Related] [New Search]