These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Author: Ren T, Fan T, Chen S, Li C, Chen Y, Ou X, Jiang Q, Ren Z, Tan F, Luo P, Chen C, Li Z. Journal: Theor Appl Genet; 2021 Mar; 134(3):807-821. PubMed ID: 33388883. Abstract: This study mapped QTLs associated with kernel-related traits by high-density genetic map. Five new major and stable QTLs for KL, KDR, SN, and KWPS were mapped in multiple environments. In the present study, a recombinant inbred line population including 371 lines derived from the cross of Chuannong18 and T1208 was genotyped using the Wheat55K single nucleotide polymorphism array. A novel high-density genetic map consisting of 11,583 markers spanning 4192.62 cM and distributed across 21 wheat chromosomes was constructed. QTLs for important kernel-related traits were mapped in multiple environments. A total of 96 and 151 QTLs were mapped by using the ICIM method and the MET method, respectively. And a total of 114 digenic epistatic QTLs were also detected across 21 chromosomes, and the epistatic effects of each trait were analyzed. BLAST analysis showed that 23 QTLs for different kernel-related traits were first time mapped and five of them were major and stable QTLs for kernel diameter ratio (121.34-126.83 cM on 4BS), spike number per square meter (71.32-73.84 cM on 2DS), kernel weight per spike (71.32-75.26 cM on 2DS), and kernel length (16.78-31.64 cM on 6A and 51.63-58.40 cM on 3D), respectively. Fifteen QTL clusters that contained 58 QTLs were also detected, and all most stable QTLs were contained in these QTL clusters. Significant correlations between different traits were detected and discussed. These results lay the foundation for fine mapping and cloning of the gene(s) underlying the stable QTLs detected in this study.[Abstract] [Full Text] [Related] [New Search]