These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sevoflurane preconditioning attenuates hypoxia/reoxygenation injury of H9c2 cardiomyocytes by activation of the HIF-1/PDK-1 pathway.
    Author: Hou T, Ma H, Wang H, Chen C, Ye J, Ahmed AM, Zheng H.
    Journal: PeerJ; 2020; 8():e10603. PubMed ID: 33391885.
    Abstract:
    BACKGROUND: Sevoflurane preconditioning (SPC) can provide myocardial protective effects similar to ischemic preconditioning (IPC). However, the underlying molecular mechanism of SPC remains unclear. Studies confirm that hypoxia-inducible factor-1 (HIF-1) can transform cells from aerobic oxidation to anaerobic glycolysis by activating the switch protein pyruvate dehydrogenase kinase-1 (PDK-1), thus providing energy for the normal life activities of cells under hypoxic conditions. The purpose of this study was to investigate whether the cardioprotective effects of SPC are associated with activation of the HIF-1a/PDK-1 signal pathway. METHODS: The H9c2 cardiomyocytes hypoxia/reoxygenation model was established and treated with 2.4% sevoflurane at the end of equilibration. Lactate dehydrogenase (LDH) level, cell viability, cell apoptosis, mitochondrial membrane potential, key enzymes of glycolysis, ATP concentration of glycolysis were assessed after the intervention. Apoptosis related protein(Bcl-2, Bax), HIF-1a protein, and PDK-1 protein were assessed by western blot. RESULTS: Compared with the H/R group, SPC significantly increased the expression of HIF-1a, PDK-1, and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the apoptosis ratio and Lactate dehydrogenase (LDH) level, increasing the cell viability, content of key enzymes of glycolysis, ATP concentration of glycolysis and stabilizing the mitochondrial membrane potential. However, the cardioprotective effects of SPC were disappeared by treatment with a HIF-1a selective inhibitor. CONCLUSION: This study demonstrates that the cardioprotective effects of SPC are associated with the activation of the HIF-1a/PDK-1 signaling pathway. The mechanism may be related to increasing the content of key enzymes and ATP of glycolysis in the early stage of hypoxia.
    [Abstract] [Full Text] [Related] [New Search]