These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: L- and X-Band Dual-Frequency Synthesizer Utilizing Lithium Niobate RF-MEMS and Open-Loop Frequency Dividers. Author: Kourani A, Yang Y, Gong S. Journal: IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1994-2004. PubMed ID: 33395392. Abstract: This article presents an 8.6-GHz oscillator utilizing the third-order antisymmetric overtone ( A3 ) in a lithium niobate (LiNbO3) radio frequency microelectromechanical systems (RF-MEMS) resonator. The oscillator consists of an acoustic resonator in a closed loop with cascaded RF tuned amplifiers (TAs) built on Taiwan Semiconductor Manufacturing Company (TSMC) RF general purpose (GP) 65-nm complementary metal-oxide semiconductor (CMOS). The TAs bandpass response, set by on-chip inductors, satisfies Barkhausen's oscillation conditions for A3 while suppressing the fundamental and higher order resonances. Two circuit variations are implemented. The first is an 8.6-GHz standalone oscillator with a source-follower buffer for direct 50- Ω -based measurements. The second is an oscillator-divider chain using an on-chip three-stage divide-by-two frequency divider for a ~1.1-GHz output. The standalone oscillator achieves a measured phase noise of -56, -113, and -135 dBc/Hz at 1 kHz, 100 kHz, and 1 MHz offsets from an 8.6-GHz output while consuming 10.2 mW of dc power. The oscillator also attains a figure-of-merit of 201.6 dB at 100-kHz offset, surpassing the state-of-the-art (SoA) oscillators-based electromagnetic (EM) and RF-MEMS. The oscillator-divider chain produces a phase noise of -69.4 and -147 dBc/Hz at 1 kHz and 1 MHz offsets from a 1075-MHz output while consuming 12 mW of dc power. Its phase noise performance also surpasses the SoA L -band phase-locked loops (PLLs). With further optimization, this work can enable low-power multistandard wireless transceivers featuring high speed, high sensitivity, and high selectivity in small-form factors.[Abstract] [Full Text] [Related] [New Search]