These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxygen requirements of the isolated rat heart during hypothermic cardioplegia. Effect of oxygenation on metabolic and functional recovery after five hours of arrest.
    Author: de Wit L, Coetzee A, Kotze J, Lochner A.
    Journal: J Thorac Cardiovasc Surg; 1988 Feb; 95(2):310-20. PubMed ID: 3339898.
    Abstract:
    Previous studies from this laboratory demonstrated that the use of an oxygenated cardioplegic solution in the hypothermic arrested rat heart resulted in improved preservation of high-energy phosphate stores (adenosine triphosphate and creatine phosphate), mechanical recovery during reperfusion, and preservation of myocardial ultrastructure. In the current study the effect of cardioplegic solutions oxygenated with 30%, 60%, and 95% oxygen was evaluated in the isolated rat heart with reference to the maintenance of adenosine triphosphate, creatine phosphate, oxygen consumption, functional recovery, and mitochondrial oxidative phosphorylation in vitro. Results indicate that the hearts receiving cardioplegic solutions supplemented with 95% oxygen and 5% carbon dioxide maintained adenosine triphosphate and creatine phosphate at control values for at least 5 hours. The oxygen consumption during elective cardiac arrest, mechanical performance during reperfusion, and in vitro mitochondrial oxygen uptake and phosphorylation rate were highest in the hearts receiving cardioplegic solutions supplemented with 95% oxygen when compared to solutions with 30% and 60% oxygen. Addition of glucose and insulin to the cardioplegic solution (95% oxygen) increased the adenosine triphosphate levels but failed to improve function after reperfusion. Although myocardial adenosine triphosphate and creatine phosphate were well preserved by the oxygenated cardioplegic solution, there was a discrepancy between the adenosine triphosphate levels at the end of the arrest period, which represents the potential for mechanical function, and the actual function of the hearts after 5 hours.
    [Abstract] [Full Text] [Related] [New Search]