These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants.
    Author: Pan C, Sretenovic S, Qi Y.
    Journal: Curr Opin Plant Biol; 2021 Apr; 60():101980. PubMed ID: 33401227.
    Abstract:
    The CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR Associated) system-mediated precise genome editing has revolutionized genome engineering due to ease of use and versatility of multiplexing. Catalytically inactivated Cas variants (dCas) further expand the usefulness of the CRISPR/Cas system for genetics studies and translational research without inducing DNA double-strand breaks. Fusion of diverse effector domains to dCas proteins empowers the CRISPR/dCas system as a multifunctional platform for gene expression regulation, epigenetic regulation and sequence-specific imaging. In this short review, we summarize the recent advances of CRISPR/dCas-mediated transcriptional activation and repression, and epigenetic modifications. We also highlight the future directions and broader applications of the CRISPR/dCas systems in plants.
    [Abstract] [Full Text] [Related] [New Search]