These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Overexpression of Solanum tuberosum Respiratory Burst Oxidase Homolog A (StRbohA) Promotes Potato Tolerance to Phytophthora infestans. Author: Soliman A, Adam LR, Rehal PK, Daayf F. Journal: Phytopathology; 2021 Aug; 111(8):1410-1419. PubMed ID: 33406852. Abstract: Reactive oxygen species (ROSs) represent one of the first lines of plants' biochemical defense against pathogens. Plants' respiratory burst oxidase homologs (RBOHs) produce ROSs as byproducts in several cellular compartments. In potato tubers, Solanum tuberosum respiratory burst oxidase homolog (StRBOHs) are involved in suberization and healing of wounded tissues. StRbohA has been tested in the model plant Arabidopsis thaliana, which led to enhanced plant defense against the soilborne pathogen Verticillium dahliae. Here, we showed that overexpressing StRbohA in potato plants increases plant tolerance to the oomycete Phytophthora infestans, the causal agent of late blight disease. Transgenic potato plants expressing StRbohA showed reduced disease symptoms (necrosis) compared with the wild type. In parallel, the expression of pathogenesis-related genes (PRs); RBOHs; antioxidation-related genes CPRX1, PRX2, APRX1, CAT1, and CAT2; and genes involved in the biosynthesis pathways of jasmonic and salicylic acids (ICS, PAL1, PAL2, LOX1, LOX2, and LOX3) exhibited significant increases in transgenic plants in response to infection. After higher expression of RBOHs, ROSs accumulated more in inoculation sites of the transgenic plants. ROSs act as signals that activate gene expression in the salicylic acid (SA) biosynthesis pathway, leading to the accumulation of SA and triggering SA-based defense mechanisms. SA-responsive PRs showed higher expression in the transgenic plants, which resulted in the restriction of pathogen growth in plant tissues. These results demonstrate the effective role of StRbohA in increasing potato defense against P. infestans.[Abstract] [Full Text] [Related] [New Search]