These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Author: Ekanayake MS, Udayanga D, Wijesekara I, Manage P. Journal: Environ Sci Pollut Res Int; 2021 Apr; 28(16):20476-20486. PubMed ID: 33410027. Abstract: The effectiveness of four aquatic floating plants: Eichhornia crassipes, Pistia stratiotes, Lemna minor, Salvinia sp., and a submerged plant Hydrilla sp. on decolorization and detoxification of five structurally different textile dyes: CI Direct Blue 201 (DB 201), Cibacron Blue FR, Cibanone Gold Yellow RK, Vat Green FFB, and Moxilon Blue GRL were studied. The E. crassipes and P. stratiotes showed complete decolorization of all the dyes tested, while Salvinia sp. (79-86%), L. minor (16-24%), and Hydrilla sp. (6-13%) were recorded as the least tolerance for all the dyes even after 14 days of incubation. Therefore, E. crassipes and P. stratiotes were selected for further studies using DB 201 as the model dye. E. crassipes and P. stratiotes showed complete decolorization of DB 201 at 48 and 84 h of incubation, respectively, and decolorization was well effective in the pH range 6-9. The crude extract of intracellular enzymes obtained from the roots of E. crassipes (46%) and P. stratiotes (20%) showed significant involvement on decolorization of DB 201, compared with the activity of crude extracellular extract and isolated endophytic bacteria and fungi (p ≤ 0.05). Further, 18 and 22% of biosorption of DB 201 dye were recorded by E. crassipes and P. stratiotes, respectively, suggesting that decolorization mechanisms of DB 201 dye by E. crassipes and P. stratiotes were based on biosorption and intracellular enzyme activities. The FTIR spectra and seed germination assay confirmed biodegradation and detoxification of DB 201 dye by E. crassipes and P. stratiotes plants along with complete color removal. Thus, present study confers the potential applicability of E. crassipes and P. stratiotes plants for textile dye removal and release to the environment without further treatment.[Abstract] [Full Text] [Related] [New Search]