These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FMRP regulates the subcellular distribution of cortical dendritic spine density in a non-cell-autonomous manner.
    Author: Bland KM, Aharon A, Widener EL, Song MI, Casey ZO, Zuo Y, Vidal GS.
    Journal: Neurobiol Dis; 2021 Mar; 150():105253. PubMed ID: 33421563.
    Abstract:
    Fragile X syndrome (FXS) is the most common form of intellectual disability that arises from the dysfunction of a single gene-Fmr1. The main neuroanatomical correlate of FXS is elevated dendritic spine density on cortical pyramidal neurons, which has been modeled in Fmr1-/Y mice. However, the cell-autonomous contribution of Fmr1 on cortical dendritic spine density has not been assessed. Even less is known about the role of Fmr1 in heterozygous female mosaic mice, which are a putative model for human Fmr1 full mutation carriers (i.e., are heterozygous for the full Fmr1-silencing mutation). In this neuroanatomical study, spine density in cortical pyramidal neurons of Fmr1+/- and Fmr1-/Y mice was studied at multiple subcellular compartments, layers, and brain regions. Spine density in Fmr1+/- mice is higher than WT but lower than Fmr1-/Y. Not all subcellular compartments in layer V Fmr1+/- and Fmr1-/Y cortical pyramidal neurons are equally affected: the apical dendrite, a key subcellular compartment, is principally affected over basal dendrites. Within apical dendrites, spine density is differentially affected across branch orders. Finally, identification of FMRP-positive and FMRP-negative neurons within Fmr1+/- permitted the study of the cell-autonomous effect of Fmr1 on spine density. Surprisingly, layer V cortical pyramidal spine density between FMRP-positive and FMRP-negative neurons does not differ, suggesting that the regulation of the primary neuroanatomical defect of FXS-elevated spine density-is non-cell-autonomous.
    [Abstract] [Full Text] [Related] [New Search]