These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Salidroside protects against cardiomyocyte apoptosis and ventricular remodeling by AKT/HO-1 signaling pathways in a diabetic cardiomyopathy mouse model.
    Author: Ni J, Li Y, Xu Y, Guo R.
    Journal: Phytomedicine; 2021 Feb; 82():153406. PubMed ID: 33422954.
    Abstract:
    BACKGROUND: Diabetic cardiomyopathy is characterized by both systolic and diastolic dysfunction due to decreased contractility, as well as reduced compliance of the myocardium. Oxidative stress plays a significant role in diabetes mellitus and its cardiovascular complications. Salidroside, a glucoside of the phenylpropanoid tyrosol, reportedly increases the levels of the antioxidative enzymes, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 (HO-1) to counteract oxidative stress; however, the underlying mechanisms are poorly understood. PURPOSE: Here we investigate the potential cardio-protective effects of salidroside and its mechanism in a diabetic animal model. METHODS: Male db/m, db/db, and age-matched wild-type mice were treated with salidroside at low dose (0.025 mg/kg) or high dose (0.05 mg/kg) by gavage every day for 12 weeks. Cardiac function and structure were assessed by echocardiography and histopathological examination. H9C2 cardiomyocytes were exposed in vitro to advanced glycosylation end products (400 μg/ml) and treated with salidroside (0.1, 1, or 10 μM). The expression of signaling-related genes were explored by western blotting and real-time PCR. RESULTS: Salidroside treatment significantly improved diabetes-induced cardiac dysfunction, hypertrophy, and fibrosis in vivo. Mechanistically, salidroside markedly up-regulates HO-1 expression by activation of the AKT signaling pathway. CONCLUSION: Salidroside protects against cardiomyocyte apoptosis and ventricular remodeling in diabetic mice. This cardio-protective effect of salidroside is dependent on AKT signaling activation.
    [Abstract] [Full Text] [Related] [New Search]