These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigations on isolated islets of langerhans in vitro. 16.Modification of the glucose-dependent inhibition of glucagon secretion.
    Author: Hahn HJ, Ziegler M.
    Journal: Biochim Biophys Acta; 1977 Oct 25; 499(3):362-72. PubMed ID: 334269.
    Abstract:
    Investigation of glucagon secretion in isolated Wistar rat islets was carried out to elucidate further the regulatory function of glucose and arginine on pancreatic A-cells. The suppressive effect of D-glucose could also be demonstrated with L-glucose, D-mannose, D-fructose, D-galactose, D-glyceraldehyde and DL-dihydroxyacetone, but not in the presence of 3-O-methylglucose or mannitol. Sugars other than D-glucose inhibited glucagon secretion only at much higher concentrations than those at which D-glucose was effective. Furthermore, although 7.5 mM D-glucose up to 80% inhibition, the effects of other sugars appeared to level off at only 50--60% inhibition. The inhibitory action of D-glucose or D-glyceraldedyde on glucagon secretion could not be overcome by L-arginine, but 3-O-methylglucose, mannoheptulose, 2-deoxy-D-glucose, iodoacetamide, theophylline, epinephrine and acetylcholine were effective. The insulin secretion in response to glucose was inhibited by the metabolic inhibitors used, whereas the B-cell response in the presence of glyceraldehyde was diminished by iodoacetamide only. Like D-glucose, a variety of other sugars markedly reduced the stimulatory effect of L-arginine in glucagon release. The results show that the suppression of glucagon secretion is not specific for D-glucose and not strongly connected on a stimulated insulin secretion.
    [Abstract] [Full Text] [Related] [New Search]