These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabarcoding analysis of the bacterial succession during vermicomposting of municipal solid waste employing the earthworm Eisenia fetida. Author: Srivastava V, Squartini A, Masi A, Sarkar A, Singh RP. Journal: Sci Total Environ; 2021 Apr 20; 766():144389. PubMed ID: 33429300. Abstract: A culture-independent DNA metabarcoding analysis of the bacterial communities was carried out throughout a complete vermicomposting cycle of municipal solid waste material using the earthworm Eisenia fetida. 16S rRNA amplicons from the initial material (0 days), an intermediate (42 days), and a final stage (84 days) were sequenced in an Illumina NGS platform and compared. A steady increase in community diversity was observed corresponding to a 2.5-fold higher taxa richness and correspondingly risen values of the Shannon and Simpson ecological indexes and the evenness parameter. A total of 49,665 operational taxonomic units (OTUs) were counted. From the qualitative standpoint, a clear successional shift was observed with an initial community dominated by putatively plant-associated groups belonging to the Rhizobiales order within the Alphaproteobacteria class, regressively leaving the scores of relative abundance (RA) to the Firmicutes phylum and in particular to the Bacilli. Vermistabilization of municipal solid waste (MSW) increased (p < 0.001) the TKN and total P content in the final vermicompost, while pH, TOC, and C/N ratio declined (p < 0.001) in the process. Likewise, a progressive decrease was noticed in β-glucosidase, acid phosphatase, and urease activity while protease and dehydrogenase showed a slight increase, followed by a steep fall. A strong positive correlation was observed among the canonical functions of physico-chemical attributes and enzyme activities. The canonical correspondence analysis (CCA) revealed that significant families did not change on the temporal scale; however, their abundance was influenced by the abiotic environmental factors. In comparison to prior studies on vermicomposting that used different earthworm species (Eisenia andrei) and different substrates, results reflect a considerable degree of substrate specificity for the earthworm species used. The results offer clues to optimize the vermistabilization of MSW along with its potential use in agriculture, to foster improved levels of the circular economy.[Abstract] [Full Text] [Related] [New Search]