These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe. Author: Zhang L, Wang Y, Jia L, Bi N, Bie H, Chen X, Zhang C, Xu J. Journal: J Hazard Mater; 2021 May 05; 409():124935. PubMed ID: 33433337. Abstract: Ultrasensitive and visual detection of tetracycline antibiotic (TC) residues is of great significance to public health and environmental safety. A novel dual-response ratiometric fluorescent nano-probe (SiQDs-Cit-Eu) has been elaborately tailored for the determination and on-site visual assay of tetracycline, by grafting citric acid and europium (Eu3+) ions onto the surface of silicon quantum dots (SiQDs). The blue-emissive SiQDs (λem = 455 nm) fabricated by a one-step facile method act as both scaffold for coordination with Eu3+ ions and recognition unit for TC owing to the inner filter effect (IFE). The coordinate unsaturated red-fluorescent Eu3+ ions (λem = 617 nm) bond to the surface of SiQDs, serving as the specific recognition element for TC due to the antenna effect. In the presence of TC, the as-synthesized nano-probe exhibits double (λem = 455 and 617 nm) and reverse response signals which are accompanied by a marked color change from blue to purple, and then red, thus achieving ultra-high sensitivity with a detection limit of 7.1 nM and instant visual detection of TC in real samples (milk, honey, lake and river water). Furthermore, smartphone-assisted point-of-care testing platform is also constructed based on nano-probe-immobilized test paper by using the color scanning APP.[Abstract] [Full Text] [Related] [New Search]