These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sleep deprivation did not enhance the success rate of chloral hydrate sedation for non-invasive procedural sedation in pediatric patients.
    Author: Cui Y, Guo L, Mu Q, Cheng Q, Kang L, He Y, Tang M, Wu Q.
    Journal: PLoS One; 2021; 16(1):e0245338. PubMed ID: 33434236.
    Abstract:
    STUDY OBJECTIVE: In Asian countries, oral chloral hydrate is the most commonly used sedative for non-invasive procedures. Theoretically, mild sleep deprivation could be considered as one of assisted techniques. However, there is no consensus on sleep deprivation facilitating the sedation during non-painful procedures in children. The aim of our study is to analyze the clinical data of children undergoing non-invasive procedural sedation retrospectively and to evaluate the association between mild sleep deprivation and sedative effects in non-invasive procedures. MEASUREMENTS: Consecutive patients undergoing chloral hydrate sedation for non-invasive procedures between December 1, 2019 to June 30, 2020 were included in this study. The propensity score analysis with 1: 1 ratio was used to match the baseline variables between patients with sleep deprivation and non-sleep deprivation. The primary outcome was the failure rate of sedation with the initial dose. The secondary outcomes included the failure rate of sedation after supplementation of chloral hydrate, the incidence of major and minor adverse events, initial and supplemental dose of chloral hydrate, and the length of sedation time. MAIN RESULTS: Of the 7789 patients undergoing chloral hydrate sedation, 6352 were treated with sleep deprivation and 1437 with non-sleep deprivation. After propensity score matching, 1437 pairs were produced. The failure rate of sedation with initial chlorate hydrate was not significantly different in two groups (8.6% [123/1437] vs. 10.6% [152/1437], p = 0.08), nor were the failure rates with supplemental chlorate hydrate (0.8% [12/1437] vs. 0.9% [13/1437], p = 1) and the length of sedation time (58 [45, 75] vs. 58 [45, 75] min; p = 0.93). CONCLUSIONS: The current results do not support sleep deprivation have a beneficial effect in reducing the pediatric chloral hydrate sedation failure rate. The routine use of sleep deprivation for pediatric sedation is unnecessary.
    [Abstract] [Full Text] [Related] [New Search]