These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Voltage-Switchable Biosensor with Gold Nanoparticles on TiO2 Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and H2O2. Author: Khaliq N, Rasheed MA, Khan M, Maqbool M, Ahmad M, Karim S, Nisar A, Schmuki P, Cho SO, Ali G. Journal: ACS Appl Mater Interfaces; 2021 Jan 27; 13(3):3653-3668. PubMed ID: 33439005. Abstract: A thin layer of gold nanoparticles (Au NPs) sputtered on cadmium sulfide quantum dots (CdS QDs) decorated anodic titanium dioxide nanotubes (TNTs) (Au/CdS QDs/TNTs) was fabricated and explored for the nonenzymatic detection of cholesterol and hydrogen peroxide (H2O2). Morphological studies of the sensor revealed the formation of uniform nanotubes decorated with a homogeneously dispersed CdS QDs and Au NPs layer. The electrochemical measurements showed an enhanced electrocatalytic performance with a fast electron transfer (∼2 s) between the redox centers of each analyte and electrode surface. The hybrid nanostructure (Au/CdS QDs/TNTs) electrode exhibited about a 6-fold increase in sensitivity for both cholesterol (10,790 μA mM-1 cm-2) and H2O2 (78,833 μA mM-1 cm-2) in analyses compared to the pristine samples. The hybrid electrode utilized different operational potentials for both analytes, which may lead to a voltage-switchable dual-analyte biosensor with a higher selectivity. The biosensor also demonstrated a good reproducibility, thermal stability, and increased shelf life. In addition, the clinical significance of the biosensor was tested for cholesterol and H2O2 in real blood samples, which showed maximum relative standard deviations of 1.8 and 2.3%, respectively. These results indicate that a Au/CdS QDs/TNTs-based hybrid nanostructure is a promising choice for an enzyme-free biosensor due to its suitable band gap alignment and higher electrocatalytic activities.[Abstract] [Full Text] [Related] [New Search]