These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ellagitannins and Oligomeric Proanthocyanidins of Three Polygonaceous Plants. Author: Li YQ, Kitaoka M, Takayoshi J, Wang YF, Matsuo Y, Saito Y, Huang YL, Li DP, Nonaka GI, Jiang ZH, Tanaka T. Journal: Molecules; 2021 Jan 11; 26(2):. PubMed ID: 33440779. Abstract: The aim of this study was to characterize hydrolyzable tannins in Polygonaceous plants, as only a few plants have previously been reported to contain ellagitannins. From Persicaria chinensis, a new hydrolyzable tannin called persicarianin was isolated and characterized to be 3-O-galloyl-4,6-(S)-dehydrohexahydroxydiphenoyl-d-glucose. Interestingly, acid hydrolysis of this compound afforded ellagic acid, despite the absence of a hexahydroxydiphenoyl group. From the rhizome of Polygonum runcinatum var. sinense, a large amount of granatin A, along with minor ellagitannins, helioscpoinin A, davicratinic acids B and C, and a new ellagitannin called polygonanin A, were isolated. Based on 2D nuclear magnetic resonance (NMR) spectroscopic examination, the structure of polygonanin A was determined to be 1,6-(S)-hexahydroxydiphenoyl-2,4-hydroxychebuloyl-β-d-glucopyranose. These are the second and third hydrolyzable tannins isolated from Polygonaceous plants. In addition, oligomeric proanthocyanidins of Persicaria capitatum and P. chinensis were characterized by thiol degradation. These results suggested that some Polygonaceous plants are the source of hydrolyzable tannins not only proanthocyanidins.[Abstract] [Full Text] [Related] [New Search]