These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucocorticoid signaling and lipid metabolism disturbances in the liver of rats treated with 5α-dihydrotestosterone in an animal model of polycystic ovary syndrome. Author: Vojnović Milutinović D, Teofilović A, Veličković N, Brkljačić J, Jelača S, Djordjevic A, Macut D. Journal: Endocrine; 2021 May; 72(2):562-572. PubMed ID: 33449293. Abstract: PURPOSE: Polycystic ovary syndrome (PCOS) is a complex reproductive disorder often associated with obesity, insulin resistance, and dyslipidemia. Hormonal changes in PCOS may also include altered glucocorticoid signaling. Our aim was to examine whether alterations in hepatic glucocorticoid signaling are associated with disturbances of glucose and lipid metabolism in animal model of PCOS. METHODS: Female rats, 3 weeks old, were subcutaneously implanted with 5α-dihydrotestosterone (DHT) or placebo pellets for 90 days to induce PCOS. Expression of 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) and A-ring reductases (5α and 5β), as well as intracellular distribution of glucocorticoid receptor (GR) and expression of its regulated genes were examined in the liver. Proteins of hepatic lipid and carbohydrate metabolism and markers of inflammation were also assessed. RESULTS: DHT treatment induced increase in body and liver mass, as well as in triglycerides and free fatty acids levels in plasma. Elevation of 11βHSD1 and reduction of 5α-reductase expression was observed together with increased hepatic corticosterone concentration and nuclear GR activation. Induced expression of Krüppel-like factor 15 and decreased expression of genes for proinflammatory cytokines and de novo lipogenesis (DNL) were detected in the liver of DHT-treated rats, while DNL regulators and proinflammatory markers were not changed. However, increased mRNA levels of stearoyl-CoA desaturase and apolipoprotein B were observed in DHT animals. CONCLUSIONS: DHT treatment stimulated hepatic glucocorticoid prereceptor metabolism through increased corticosterone availability which is associated with enhanced GR activation. This does not affect gluconeogenesis and DNL, but could be linked to stimulated triglyceride synthesis and hypertriglyceridemia.[Abstract] [Full Text] [Related] [New Search]