These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Author: Wang C, Yokota T, Someya T. Journal: Chem Rev; 2021 Feb 24; 121(4):2109-2146. PubMed ID: 33460327. Abstract: Biocompatible conductors are important components for soft and stretchable bioelectronics for digital healthcare, which have attracted extensive research efforts. Natural biopolymers, compared to other polymers, possess unique features that make them promising building blocks for biocompatible conductors, such as good biocompatibility/biodegradability, natural abundance, sustainability, and capability, can be processed into various functional formats with tunable material properties under benign conditions. In this comprehensive review, we focus on the recent advances in biocompatible conductors based on natural biopolymers for stretchable bioelectronics. We first give a brief introduction of conductive components and natural polymers and summarize the recent development of biocompatible conductors based on representative natural biopolymers including protein (silk), polypeptide (gelatin), and polysaccharide (alginate). The design and fabrication strategies for biocompatible conductors based on these representative biopolymers are outlined, after the chemical structure and properties of such biopolymers are presented. Then we discuss the electronic component-biopolymer interface and bioelectronic-biological tissue (skin and internal tissues) interface, highlight various fabrication techniques of biocompatible conductors for soft bioelectronics, and introduce representative examples of utilizing natural biopolymer-based biocompatible conductors for on-skin bioelectronics, textile-based wearable electronics, and implantable bioelectronics for digital healthcare. Finally, we present concluding remarks on challenges and prospects for designing natural biopolymers for soft biocompatible conductors and bioelectronics.[Abstract] [Full Text] [Related] [New Search]