These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ac-FLTD-CMK inhibits pyroptosis and exerts neuroprotective effect in a mice model of traumatic brain injury.
    Author: Wang P, Pan B, Tian J, Yang L, Chen Z, Yang L, Fan Z.
    Journal: Neuroreport; 2021 Feb 03; 32(3):188-197. PubMed ID: 33470761.
    Abstract:
    Pyroptosis has been reported to contribute to the traumatic brain injury (TBI) process. Ac-FLTD-CMK is a newly synthesized pyroptosis inhibitor. However, whether Ac-FLTD-CMK inhibits pyroptosis and plays a neuroprotective role after TBI is unknown. The present study aimed to determine the effects of Ac-FLTD-CMK on TBI in a mouse model. Male C57BL/6 mice were randomly divided into sham, TBI + vehicle, and TBI + Ac-FLTD-CMK groups. TBI was induced using a weight-drop apparatus. Intraventricular injection of Ac-FLTD-CMK was performed 30 min after TBI. Caspase-1, caspase-11, gasdermin-D (GSDMD), and caspase-3 expression in the peri-contusional cortex were assessed by western blotting. Interleukin-1β (IL-1β) and interleukin-18 (IL-18) expression in the peri-contusional cortex were measured using ELISA. Behavioral experiments, brain water content, Evans blue extravasation, lactate dehydrogenase (LDH) release, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining were also performed. The results showed that Ac-FLTD-CMK administration significantly downregulated caspase-1 p20, caspase-11 p20, GSDMD N-terminal, IL-1β, and IL-18 expression; reduced LDH release; alleviated neuronal death; attenuated brain edema and blood-brain barrier damage; and improved neurobehavioral function. These findings indicate that Ac-FLTD-CMK treatment suppresses pyroptosis and protects mice against TBI.
    [Abstract] [Full Text] [Related] [New Search]