These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diphlorethohydroxycarmalol inhibits melanogenesis via protein kinase A/cAMP response element-binding protein and extracellular signal-regulated kinase-mediated microphthalmia-associated transcription factor downregulation in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells and zebrafish.
    Author: Ding Y, Jiang Y, Im ST, Myung S, Kim HS, Lee SH.
    Journal: Cell Biochem Funct; 2021 Jun; 39(4):546-554. PubMed ID: 33474761.
    Abstract:
    Diphlorethohydroxycarmalol (DPHC) is a marine polyphenolic compound derived from brown alga Ishige okamurae. A previously study has suggested that DPHC possesses strong mushroom tyrosinase inhibitory activity. However, the anti-melanogenesis effect of DPHC has not been reported at cellular level. The objective of the present study was to clarify the melanogenesis inhibitory effect of DPHC and its molecular mechanisms in murine melanoma cells (B16F10) and zebrafish model. DPHC significantly inhibited tyrosinase activity and melanin content dose-dependently in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. This polyphenolic compound also suppressed the expression of phosphorylation of cAMP response element-binding protein (CREB) by attenuating phosphorylation of cAMP-dependent protein kinase A, resulting in decreased MITF expression levels. Furthermore, DPHC downregulated MITF protein expression levels by promoting the phosphorylation of extracellular signal-regulated kinase. It also inhibited tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2 in α-MSH stimulated B16F10 cells. In in vivo studies using zebrafish, DPHC also markedly inhibited melanin synthesis in a dose-dependent manner. These results demonstrate that DPHC can effectively inhibit melanogenesis in melanoma cells in vitro and in zebrafish in vivo, suggesting that DPHC could be applied in fields of pharmaceutical and cosmeceuticals as a skin-whitening agent. Significance of study: The present study showed for the first time that DPHC could inhibit a-MSH-stimulated melanogenesis via PKA/CREB and ERK pathway in melanoma cells. It also could inhibit pigmentation in vivo in a zebrafish model. This evidence suggests that DPHC has potential as a skin whitening agent. Taken together, DPHC could be considered as a novel anti-melanogenic agent to be applied in cosmetic, food, and medical industry.
    [Abstract] [Full Text] [Related] [New Search]