These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oligonucleotide Anion Adduct Formation Using Negative Ion Electrospray Ion-Mobility Mass Spectrometry. Author: Sutton JM, El Zahar NM, Bartlett MG. Journal: J Am Soc Mass Spectrom; 2021 Feb 03; 32(2):497-508. PubMed ID: 33476148. Abstract: Improving the mobile phase of electrospray oligonucleotides has been a major focus in the field of oligonucleotides. These improved mobile phases should reduce the charge state envelope of oligonucleotides coupled with electrospray ionization, which is key to reducing spectral complexity and increasing sensitivity. Traditional mobile phase compositions with fluorinated alcohol and alkylamine, like hexafluoroisopropanol (HFIP) and triethylamine (TEA), have a large amount of cationic adduction and many charge states. Utilizing different fluorinated alcohol and alkylamine combinations, like nonafluoro-tert-butyl alcohol (NFTB) and octylamine (OA), can selectively reduce the charge states analyzed. Other classes of biomolecules have been analyzed with anionic salts to stabilize complexes, increase the molecular peak detection, and even provide unique structural information about these molecules; however, there have been no studies using anionic salts with oligonucleotides. Our experiments systematically study the stability and binding of ammonium anionic salt. We show that anions selectively bind low charge states of these oligonucleotides. Ion-mobility measurements are made to determine the collision cross section (CCS) of these oligonucleotides with anion adduction. We utilize both a nucleic acid exact hard sphere simulation (EHSS) calibration and a protein calibration. We are able to show that NFTB/OA is a good choice for the study of oligonucleotides with reduced charge states for the binding of anionic salts and the determination of CCS using ion mobility.[Abstract] [Full Text] [Related] [New Search]