These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular dynamics simulations of amyloid-β(16-22) peptide aggregation at air-water interfaces.
    Author: Okumura H, Itoh SG.
    Journal: J Chem Phys; 2020 Mar 07; 152(9):095101. PubMed ID: 33480728.
    Abstract:
    Oligomers of amyloid-β (Aβ) peptides are known to be related to Alzheimer's disease, and their formation is accelerated at hydrophilic-hydrophobic interfaces, such as the cell membrane surface and air-water interface. Here, we report molecular dynamics simulations of aggregation of Aβ(16-22) peptides at air-water interfaces. First, 100 randomly distributed Aβ(16-22) peptides moved to the interface. The high concentration of peptides then accelerated their aggregation and formation of antiparallel β-sheets. Two layers of oligomers were observed near the interface. In the first layer from the interface, the oligomer with less β-bridges exposed the hydrophobic residues to the air. The second layer consisted of oligomers with more β-bridges that protruded into water. They are more soluble in water because the hydrophobic residues are covered by N- and C-terminal hydrophilic residues that are aligned well along the oligomer edge. These results indicate that amyloid protofibril formation mainly occurs in the second layer.
    [Abstract] [Full Text] [Related] [New Search]