These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite. Author: Vatanpour V, Faghani S, Keyikoglu R, Khataee A. Journal: Carbohydr Polym; 2021 Mar 15; 256():117413. PubMed ID: 33483008. Abstract: This study reports the modification of cellulose acetate (CA) membrane with zinc oxide (ZnO)@graphitic carbon nitride (g-C3N4) nanocomposite to improve the antifouling and separation performance. Different combinations of the CA-based membranes such as CA/g-C3N4, CA/ZnO, and CA/ZnO@g-C3N4 were fabricated using the non-solvent induced phase separation (NIPS) method. Membranes were analyzed for their morphology (SEM), porosity, pore size, contact angle, permeability, rejection, and antifouling properties. According to the SEM images of CA/ZnO@g-C3N4, the formation of pear-shaped macro voids and finger-like canals originating from the top layer was evident. Nanocomposite blended membrane with 0.25 wt.% ZnO@g-C3N4 achieved the largest pore radius (3.05 nm) and the lowest contact angle (67.7°). With these characteristics, 0.25 wt.% ZnO@g-C3N4 membrane obtained a pure water flux of 51.3 LMH, which is 2.1 times greater than the bare CA and high BSA and dye rejections with 97.20% and 93.7% respectively. Finally, the antifouling resistance of the CA membrane was greatly improved with FRR increasing from 73.7% to 94.8%, which was accompanied by a significant decrease in the fouling resistance parameters.[Abstract] [Full Text] [Related] [New Search]