These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DHA attenuated Japanese Encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat Neuron/glia.
    Author: Chang CY, Wu CC, Wang JD, Li JR, Wang YY, Lin SY, Chen WY, Liao SL, Chen CJ.
    Journal: Brain Behav Immun; 2021 Mar; 93():194-205. PubMed ID: 33486004.
    Abstract:
    Japanese Encephalitis Virus (JEV) is a neurotropic virus and its Central Nervous System (CNS) infection causes fatal encephalitis with high mortality and morbidity. Microglial activation and consequences of bystander damage appear to be the dominant mechanisms for Japanese Encephalitis and complications. Docosahexaenoic acid (DHA), an essential fatty acid and a major component of brain cell membranes, possesses additional biological activities, including anti-apoptosis, anti-inflammation, and neuroprotection. Through this study, we have provided experimental evidence showing the anti-inflammatory, neuroprotective, and anti-viral effects of DHA against JEV infection in rat Neuron/glia cultures. By Neuron/glia and Neuron cultures, DHA protected against neuronal cell death upon JEV infection and reduced JEV amplification. In Neuron/glia and Microglia cultures, the effects of DHA were accompanied by the downregulation of pro-inflammatory M1 microglia, upregulation of anti-inflammatory M2 microglia, and reduction of neurotoxic cytokine expression, which could be attributed to its interference in the Toll-Like Receptor (TLR), Mitogen-Activated Protein Kinase (MAPK), and Interferon/Janus Kinase/Signal Transducers and Activators of Transcription (Stat), along with the NF-κB, AP-1, and c-AMP Response Element Binding Protein (CREB) controlled transcriptional programs. Parallel anti-inflammatory effects against JEV infection were duplicated by G Protein-Coupled Receptor (GPR120) and GPR40 agonists and a reversal of DHA-mediated anti-inflammation was seen in the presence of GPR120 antagonist, while the GPR40 was less effectiveness. Since increasing evidence indicates its neuroprotection against neurodegenerative diseases, DHA is a proposed anti-inflammatory and neuroprotective candidate for the treatment of neuroinflammation-accompanied viral pathogenesis such as Japanese Encephalitis.
    [Abstract] [Full Text] [Related] [New Search]