These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrochemical oxidation of triclosan using Ti/TiO2 NTs/Al-PbO2 electrode: reaction mechanism and toxicity evaluation.
    Author: Mei Y, Chen J, Pan H, Hao F, Yao J.
    Journal: Environ Sci Pollut Res Int; 2021 Jun; 28(21):26479-26487. PubMed ID: 33486682.
    Abstract:
    5-Chloro-2-(2,4-dichlorophenoxy) phenol (triclosan, TCS) is a potential threat to the environment and human health, and it needs appropriate approaches for its removal. A new modified PbO2 electrode, Al-PbO2 based on TiO2 nanotubes (NTs), was successfully prepared for TCS electrochemical oxidation. Scanning electron microscopy indicated a compact coating layer on the anode. TCS removal on Ti/TiO2 NTs/Al-PbO2 anode followed a pseudo-first-order kinetics. The electrical efficiency per log order (EE/O) for oxidation was decreased from 14.79 to 12.90 kWh m-3 order-1 after TiO2 NTs on Ti material and decreased to 8.27 kWh m-3 order-1 after Al3+ doping. The effects of current density, pH value, and electrolyte concentration were investigated. Intermediate organo-chlorinated compounds were detected by gas chromatography coupled with mass spectrometry, high-performance liquid chromatography, and ion chromatography. Finally, ecotoxicity assessment revealed that the degradation of TCS by electrooxidation system with Ti/TiO2 NTs/Al-PbO2 anode could yield a smaller toxicity compared with parent compounds.
    [Abstract] [Full Text] [Related] [New Search]