These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Elastomeric nematic colloids, colloidal crystals and microstructures with complex topology.
    Author: Yuan Y, Keller P, Smalyukh II.
    Journal: Soft Matter; 2021 Mar 21; 17(11):3037-3046. PubMed ID: 33491729.
    Abstract:
    Control of physical behaviors of nematic colloids and colloidal crystals has been demonstrated by tuning particle shape, topology, chirality and surface charging. However, the capability of altering physical behaviors of such soft matter systems by changing particle shape and the ensuing responses to external stimuli has remained elusive. We fabricated genus-one nematic elastomeric colloidal ring-shaped particles and various microstructures using two-photon photopolymerization. Nematic ordering within both the nano-printed particle and the surrounding medium leads to anisotropic responses and actuation when heated. With the thermal control, elastomeric microstructures are capable of changing from genus-one to genus-zero surface topology. Using these particles as building blocks, we investigated elastomeric colloidal crystals immersed within a liquid crystal fluid, which exhibit crystallographic symmetry transformations. Our findings may lead to colloidal crystals responsive to a large variety of external stimuli, including electric fields and light. Pre-designed response of elastomeric nematic colloids, including changes of colloidal surface topology and lattice symmetry, are of interest for both fundamental research and applications.
    [Abstract] [Full Text] [Related] [New Search]